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Problem Specification

Nowadays data mining involves working with large amounts of data which often cannot

be processed on a few central servers, rather, they must be handled in a fully distributed

manner. The author of this thesis overviews the machine learning and distributed comput-

ing background and gossiping techniques, especially the Gossip Learning Framework.

The main contribution of this thesis is the implementation and evaluation of a fully

distributed algorithm in a real world application.
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Summary

We overviewed machine learning techniques and peer-to-peer networks as well as Tribler,

a popular BitTorrent-based fully distributed social-based content sharing platform and

its technical details, e.g. the Dispersy permission system. Working together with the

developers of Tribler, we realized that there is a great need for machine learning solutions,

such as spam filtering or vandalism detection.

We decided to implement the Gossip Learning Framework in Tribler, which is a ro-

bust, asynchronous, gossip based protocol that can withstand high churn and failure rates,

making it ideal for peer-to-peer networks. In this setting, each peer trains on their local

training examples (which could be very few) and pass along the trained models to their

neighbors. This keeps the network complexity low as well as provide some privacy while

being able to collectively learn the structure of the data.

We have investigated ways of integrating this protocol into Tribler, and we concluded

that the best way to do this is to create a so-called community within Tribler. To validate

our implementation, we loaded up two databases into the Tribler network and were able

to reproduce previous simulation results.

Tools used: GoLF (Peersim) peer-to-peer simulator written in Java, run on a high

performance Linux server. The Tribler community was written in Python2. All of the

source code and tools are publicly available.

Keywords: machine learning, distributed systems, gossip protocols, Tribler
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Tartalmi összefoglaló

A gépi tanulási módszerek és peer-to-peer hálózatok áttekintését követően a Tribler nevű

népszerű BitTorrent alapú teljesen elosztott szociális tartalommegosztó rendszerrel, és an-

nak technikai részleteivel foglalkoztunk (ı́gy példálul a Dispersy jogosultság rendszerrel).

A Tribler fejlesztőivel együttműködve beláttuk, hogy a rendszernek nagy szüksége lenne

gépi tanulási megoldásokra, mint például a spam-szűrés vagy a vandalizmus detekció.

Úgy döntöttünk, hogy a Gossip Learning Framework nevű robosztus, aszinkron, ple-

tyka alapú rendszert implementáljuk a Tribleren belül. Ez egy kiválóan alkalmas peer-

to-peer rendszerek, mely képes ellenállni a felhasználók gyakori ki- és belépésének il-

letve gyakori meghibásodásoknak. A feladathoz tartozik, hogy a csomópontok csupán

néhány lokális tanulópéldával rendelkeznek és az ezeken tanı́tott modelleket küldik a

szomszédaiknak. Ez alacsonyan tartja a hálózati forgalmat és bizonyos magánéleti védelmet

is biztosı́t, miközben lehetőség nyı́lik kollektı́ven tanulni az adatok struktúráját.

Megvizsgáltuk a protokoll Triblerbe integrálásának lehetőségeit, és arra jutottunk,

hogy a legjobb megoldás, ha egy úgynevezett közösséget (community) hozunk létre a

Tribler rendszerén belül. Annak érdekében, hogy meggyőződjünk az implementáció

helyességéről, két tanı́tó adatbázissal feltöltöttük a Tribler hálózatát és sikerült repro-

dukálni a korábbi szimulációs eredményeket.

Felhasznált eszközök: GoLF (Peersim) Java nyelven ı́rt peer-to-peer szimulátor, ame-

lyet egy nagy teljesı́tményű Linux szerveren futtattunk. A Tribler közösség kódja Python2

nyelven ı́ródott. Az összes forráskód és a felhasznált eszközök nyilvánosak.

Kulcsszavak: gépi tanulás, elosztott rendszerek, pletyka protokollok, Tribler
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Introduction

Nowadays, the data available on the internet is increasing at a high pace, especially be-

cause people and machines generate data at the same time. Machine learning over fully

distributed data in peer-to-peer (P2P) applications is an interesting problem. For example,

the case of social network profiles, mobile networks sensor readings could benefit from

machine learning on data that is fully distributed.

In the extreme case, we have very few (maybe only one) training example available on

each peer, which means that we can not learn a model locally. Instead, we learn models

in an online way on each peer and send the models to other peers. The size of the models

can be considerably smaller than a few training examples, also, it provides some sense of

privacy.

At this time, there are not many known deployed systems that use this kind of machine

learning. In this thesis we discuss a machine learning framework and show how one can

implement it in a real-life application, such as the Tribler peer-to-peer content sharing

platform.

We will focus on linear models, e.g. Logistic regression. We then analyze the results

of the implementation through various tests and conclude that they concur with previous

simulation results.

The thesis is structured as follows: In Chapter 1, we will talk about some of the basic

peer-to-peer design principles. The chapter will also present an introduction to machine

learning learning while focusing on supervised learning, and more specifically, stochas-

tic gradient descent. After that, Chapter 2 will discuss the Gossip Learning Framework

(GoLF), which is the subject of the implementation in this thesis. Next, in Chapter 3, we

introduce the target platform called Tribler along with a few technical details. Following

that, in Chapter 4, we dive into the actual implementation details. In Chapter 5 we show

that our implementation works and compare it to previous simulation results.
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Chapter 1

Preliminaries

This chapter gives an introduction to the two fields related to this work: Peer-to-Peer

Networks and Machine Learning. Some notations will be introduced as well. This will

hopefully help readers unfamiliar with these two areas understand the remainder of this

thesis. For a complete overview of these fields, please refer to proper textbooks and

resources which will be referenced later on.

1.1 Peer-to-Peer Systems

Nowadays with the increasing usage of personal computers and mobile devices connected

to the internet, it is important to build systems that enable their users to efficiently access

data. Some of the most popular applications are real-time and on-demand video and

audio streaming (YouTube, Netflix, justin.tv, . . . ), Voice over IP (Skype), social networks

(Facebook, Twitter, Google+, . . . ), file sharing protocols (private and public BitTorrent

communities), web searching, cloud services (Amazon Web Services). In the last few

years the number of smartphones and tablets has increased tremendously.

1.1.1 The peer-to-peer paradigm

One way to structure the workload in a distributed computing environment is the client-

server architecture, which has been used effectively for a long time. In this setting, there

are one or more dedicated servers to which clients connect through the network. The

servers provide some kind of resoruce that the clients are interested in. For example, this

could be a web, video, or email service. Every client depends on the servers, and the
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servers take all the workload. This is a big disadvantage of the client-server paradigm.

Instead, an other way would be to have every computer act as a server and a client

at the same time, which gives us the peer-to-peer architecture. We will call the partici-

pating computers as nodes, or peers. Each node can serve others and request resources

simultaneously. This eliminates the single point of failure. However, as a consequence,

algorithms become more complicated.

1.1.2 Basic concepts

In a P2P network, each node is connected to a set of other peers, we call them neighbors.

The (virtual) networks of these connections are called overlay networks.

Network connections on the internet could use the TCP or UDP protocols. TCP is

stateful, has error detection, is mainly used for sending documents and other critical data.

On the other hand, UDP is stateless, which makes it suitable for video and audio trans-

mission.

Connectability

Nodes are often connected to the internet through Network Address Translation and/or

firewalls which might be configured not to accept incoming connections. We call them

unconnectable. This makes it difficult to reach out to these peers, they can, however,

reach other, connectable peers. The connectability problem has made designing some

P2P applications more difficult, as the ratio of unconnectable peers on the internet is

quite high, can range between 35% and 90% [6, 12] depending on the application and

geographical location. There are methods to exploit some NAT devices, e.g. the method

often referred to as NAT puncturing or NAT traversal. Generally, protocols using UDP

can more effectively go around NATs than protocols built on TCP [8].

Churn

In practice, existing peers disconnect and new peers connect all the time. This is called

churn. Session lengths can typically be approximated with log-normal distribution [19].

Even if the protocol requires the peer to inform others when they disconnect, this

might not always happen because of network and system failures, or misbehavior. A

well-designed protocol takes this into consideration. Protocols must endure the massive

arrival and departure of peers as well.
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Figure 1.1: Top internet applications in North America in 2011 [16].

1.1.3 Significance

Most of the peer-to-peer (P2P) traffic is file-sharing, video-streaming, and content deliv-

ery, in general. According to a study done by Sandvine[16], in the spring of 2011, P2P

file-sharing (BitTorrent) was responsible for 52.01% of all upstream traffic in North America

in peak periods (see Figure 1.1). Skype has a good chunk of upstream traffic as well,

which uses P2P too. The report concludes that P2P file-sharing is dropping, and Real-

Time Entertainment and Mobile traffic is on the rise. While the latter two are not neces-

sarily P2P applications, they could still be done in a distributed way.

1.1.4 BitTorrent

BitTorrent is one of the most popular P2P file-sharing applications. It was first introduced

in 2001 by Bram Cohen, a publication followed in 2003 [4], and it has been in the focus

of research and media the following years. Its main advantage is that it scales well with

the number of users and it is user friendly.

A torrent is a metadata file format that describes sets of files to be shared. It contains

information such as file sizes, CRC, and tracker addresses. The files are split into fixed-

size chunks or pieces, which are transferred in blocks. A group of peers sharing the
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same torrent is called a swarm. Each peer is downloading and uploading simultaneously.

In the original protocol, there is a central server called the tracker. Each peer contacts

the tracker in order to get a set of random peers from the same swarm. This creates a

single point of failure, which is mitigated by Distributed Hash Tables for instance. The

original client was written in Python, but since then numerous client implementations

have surfaced which have a wide range of interfaces (GUI, console, web, mobile). One

of these BitTorrent clients is called Tribler, which is in the focus of the implementation in

this thesis.

1.2 Machine Learning

Machine Learning grew out of artificial intelligence. It is a field of study that gives com-

puters the ability to learn without being explicitly programmed (Arthur Samuel, 1959.).

Tom Mitchell defined Machine Learning as the follows [11]:

A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P , if its performance at tasks in T ,

as measured by P , improves with experience E.

Machine Learning has been effectively used to solve many interesting problems: spam

detection, search engines, data mining, recommendation systems, natural language pro-

cessing, speech recognition, computer vision, robotics, games, and much more.

In the remainder of this chapter we will introduce a few learning algorithms which we

will use later and some basic methods for applying Machine Learning algorithms. The

resources used here are [2, 13, 7].

1.2.1 Problem types

Machine Learning problems can roughly be categorized into a few major types:

• Supervised learning

• Unsupervised learning

• Reinforcement learning

11
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Training set

Learning algorithm

h hypothesisx h(x)

Parameters

Figure 1.2: The supervised learning process.

When we first encounter a problem, we have to determine which category it belongs

to. The three categories employ different techniques and algorithms. Some of these will

be presented briefly. This work focuses on supervised learning, but the other two ways

have also been successfully used in P2P networks.

Supervised learning

Let x ∈ X be an input feature vector and y ∈ Y a target vector. The training set comprises

of m training examples, S =
{

(x, y)(i)
}m

i=1
⊆ (X × Y). The goal is to find a h : X 7→ Y

hypothesis function that predicts the correct corresponding y value based on an x value.

After successfully finding a hypothesis, we will use h to predict the y ∈ Y values for

some x ∈ X we have not seen before (which should come from the same distribution as

the previously seen training examples).

In the case of online learning, we have to make a prediction for some x values be-

fore being able to see every training example. Online learning will be very useful in the

implementation of supervised learning algorithms in distributed networks.

When the y target value is a continuous variable, we are dealing with a regression

problem, whereas when y is discrete, we have a classification problem. In this case, y

is called the label. As a special case, when we only have two values for y, for example

Y = {0, 1}, we have a binary classification problem. The perceptron algorithm, for

instance, uses Y = {−1, 1}.

Well known methods and algorithms:

• Linear Regression

12
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• Logistic Regression

• Perceptron

• Support Vector Machines

• Bayesian Decision methods

• Decision Trees

• Artificial Neural Networks

• Hidden Markov Models

Unsupervised learning

This case is similar to Supervised learning, except there are no y target values present in

the training set. The goal is to find clusters, or other structures in the data.

Well known methods and algorithms:

• K-means clustering

• Expectation Maximization

• Principal Component Analysis

Reinforcement learning

In this setting, it is hard to determine if an action is right or not, we do not have a training

set. Rather, the algorithms are provided with a reward function which punishes or rewards

the agent based on its actions.

Reinforcement learning is based on Markov Decision Processes (MDPs). Some of the

methods to work with MDPs are value iteration and policy iteration.

1.2.2 Linear regression

First, let us take a look at a simple supervised machine learning algorithm for real-valued

prediction, the linear regression. After that, we will discuss three algorithms that we use

in our implementation.

13
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Let us consider a real valued n-dimensional regression problem, that is, we are looking

for a parameterized hypothesis hθ : R
n 7→ R, where θ =





θ0
θ1
...
θn



 ∈ R
n+1.

In the case of linear regression, the hypothesis h is a linear function, a hyperplane:

hθ(x) = θ0 + θ1x1 + · · ·+ θnxn =
n

∑

i=0

θixi = θTx

where x0 = 1 is the bias term, by convention. This can be extended to polynomial

regression.

1.2.3 Logistic regression

Let us now consider a real valued n-dimensional binary classification problem, that is,

we are looking for a parameterized hypothesis hθ : R
n 7→ {0, 1}, where θ is the same as

above. We could use a separating hyperplane for this case as well, but that would perform

really poorly on a binary class. We will use the sigmoid form instead:

hθ(x) = g(θTx) =
1

1 + e−θT x

where

g(x) =
ex

ex + e0
=

1

1 + e−x

is the sigmoid function shown in Figure 1.3.

1.2.4 Gradient descent

In this subsection we will introduce an iterative method that solves both linear regression

and logistic regression. For linear regression, we use the least squares cost function:

J(θ) =
1

2m

m
∑

i=1

(hθ(x
(i))− y(i))2.

For logistic regression, we use a slightly different cost function:

J(θ) =
m
∑

i=1

y(i) log hθ(x
(i)) + (1− y(i)) log(1− hθ(x

(i)))

14
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Figure 1.3: The sigmoid function g(x) = 1
1+e−x .

The idea is that we want to minimize errors on the training set and that will lead

us to the best hypothesis. That is, we have to minimize the cost function. One such

optimization algorithm is the gradient descent algorithm. It starts off with an arbitrarily

defined θ parameter, and works its way to the optimal θ∗, each step possibly decreasing

the cost function.

In each step, it modifies θj, j = 0, . . . , n simultaneously using the following update

rule:

θj = θj − α
∂

∂θj
J(θ)

where α ∈ R
+ is the learning rate.

The partial derivative tells us the direction the cost function is increasing the most.

Since we are minimizing the cost function, we want to move θ to the direction opposite to

the derivative. If the derivative is positive, the cost function is increasing, and so we will

decrease θ, and as a result, decreasing J(θ). In case the derivative is negative, the cost

function is decreasing, and so we will be increasing θ, and as a result, decrease J(θ).

For both linear regression and logistic regression, we get the following partial deriva-

tive of J(θ):

15
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Algorithm 1 Batch gradient descent algorithm.

1: Choose initial θj and α.

2: repeat

3: θj ← θj − α
∑m

i=0(hθ(x
(i))− y(i))x

(i)
j (for j = 0, . . . , n)

4: until convergence

Algorithm 2 Stochastic gradient descent algorithm.

Shuffle the dataset.

for i = 1, . . . ,m do

θj ← θj − α(hθ(x
(i))− y(i))x

(i)
j

(for j = 0, . . . , n)

end for

∂

∂θj
J(θ) =

m
∑

i=0

(hθ(x
(i))− y(i))x

(i)
j

Using this, we can construct our first gradient descent algorithm, as shown in Algo-

rithm 1. Even though the gradient descent only finds one local optimum, it will be a

suitable method for optimizing J(θ), because it is a convex quadratic function which has

only one local optimum, which is a global optimum as well. Figure 1.4 shows an example

of a multi-dimensional quadratic function.

This version is called batch gradient descent and it considers every training example

for each iteration. While this works in some cases, we would rather not look at each

training example. If the training set is too large, or when it is not feasible to access every

training example, this method will not work well.

Another to work around this is to use a subset of the training set, Q ⊆ S in each

iteration. This is called mini-batch gradient descent and has the following update rule:

θj = θj − α
∑

(x,y)∈Q

(hθ(x)− y)xj

(for j = 0, . . . , n)

As a special case, we can update θ for each training example. This is called stochastic

gradient descent (SGD) and has the following update rule shown in Algorithm 2:

The stochastic gradient descent will play a key role in the following chapters when

working with Peer-to-Peer systems. We will assume that every peer has only one local
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Figure 1.4: Multi-dimensional quadratic function.

training example.

Choosing α

The gradient descent method converges, given we chose an appropriate value for α.

Choosing a good value for the learning rate depends on the data we have at hand. If

too small, the algorithm might converge too slowly. If too large, however, the algorithm

might even diverge. One can fine tune the value of α with dataset samples.

The series of α should be divergent, and the power sum of α should be convergent,

i.e.
∑

α = ∞,
∑

αk < ∞ (k > 1). For stochastic gradient descent, we usually choose

an α that is a decreasing function of the iteration counter t, it can be as simple as αt =
1
t
.
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1.2.5 Adaline Perceptron and Pegasos

In this section we give a brief introduction to two other algorithms that can be plugged

into the Stochastic gradient optimization framework.

Adaline Perceptron

The Adaline perceptron [21] is a one-layer neural network developed in 1960. Consider

the cost function

J(θ) =
1

2
(y − hθ(x))

2

for the binary classification problem, where X = R
n,Y = {−1, 1}.

The gradient at θ for x is

∂

∂θ
J(θ) = −(y − θTx)x

which yields the (vectorized) update rule

θ = θ + η(y − θTx)x (1.1)

where η = 1
αt

is the learning rate. It is then straightforward to plug this in the SGD

framework.

After regularization, the Adaline perceptron update rule becomes the following:

θ = (1− η)θ +
η

λ
(y − θTx)x (1.2)

Pegasos

Support Vector Machines (SVM)[5] is a popular method for solving various machine

learning tasks. Its optimization problem can be written in two equivalent forms, the primal

problem and the dual problem.

Primal problem:

min
w,ξi,b

1

2
‖w‖2 + C

m
∑

i=1

ξi

s.t. yi(w
Txi − b) ≥ 1− ξi, i = 1, . . . ,m

ξi ≥ 0, i = 1, . . . , m

(1.3)
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Algorithm 3 Pegasos algorithm update rule (simplified).

1: η ← 1/(α · t)
2: if y · wTx < 1 then

3: w ← (1− ηα)w + ηyx
4: else

5: w ← (1− ηα)w
6: end if

Dual problem:

max
α

W (α) =
m
∑

i=1

αi −
1

2

∑

i,j

αiαjyiyjx
T
i xj

s.t. 0 ≤ αi ≤ C, i = 1, . . . , m
m
∑

i=1

αiyi = 0

(1.4)

In our setting, we only consider working with the linear kernel version, which is shown

in Equations 1.3 and 1.4.

We will use the Primal Estimated sub-GrAdient SOlver for SVM (Pegasos) algorithm[18],

which solves the SVM problem in a SGD based approach. It solves the primal problem,

however, most SVM algorithms (e.g. SMO) solve the dual problem. The simplified ver-

sion of this algorithm is shown in Algorithm 3. As usual, x is the feature vector, y is the

class label, w is the hyperplane, t is the iteration counter, and η is the learning rate.

1.2.6 Working with supervised algorithms

This section focuses on supervised learning, however, some concepts can be used with

other problem types as well. In the remainder of this chapter, we will be considering

supervised learning problems.

Advanced evaluation

Previously we introduced the training set on which we build our model. In order to have

an idea of the performance of the model, we must evaluate it. This is normally done on a

separate testing set Stest, which is a set of (x, y) pairs. In this simple setting, we first create

our hypothesis h on the training set, then for each x in the testing set, we use h to predict
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Figure 1.5: Cross-validation with m = 6, k = 2.

h(x). After that, we compare h(x) to y to determine if there was an error. The error

definition can be application-specific (zero-one error, mean absolute error, etc.). Usually

the initial database is split into training and testing sets. The ratio could be 70:30.

k-fold cross-validation is an advanced evaluation method (as described in [13]):

1. Randomly split S into k disjoint subsets of ⌈m/k⌉ training examples each. Call

these subsets S1, . . . , Sk.

2. For j = 1, . . . , k

Train on S1 ∪ · · · ∪Sj−1 ∪Sj+1 ∪ · · · ∪Sk (that is, train on all the data except

Sj) to get hypothesis hj . Calculate the error of hj only on Sj .

3. The estimated generalization error of the model is the average error over j.

Figure 1.5 shows an example setup for cross-validation. The special case k = m, is

called leave-one-out cross validation.

Normalization

For many machine learning algorithms, it is very important that we normalize our input

feature vectors. Otherwise, the algorithms might converge very slowly, if at all.

Normalization can be done by subtracting the mean and dividing by the variance.

One other way to do it is to divide by the range (the difference of the maximum and the

minimum). The normalization when predicting should use the parameters (e.g. variance)
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Figure 1.6: A linear (left), a quadratic (middle), and a 5th order polynomial (right) fit of

a quadratic function with added noise.

from the normalization on the training set, i.e. we should normalize data using the same

operations.

Generalization

For a regression problem, consider some data points and three models, shown in Fig-

ure 1.6:

• A linear model (a).

• A 2nd order polynomial model (b).

• A 5th order polynomial model (c).

The hypotheses a and c show the two cases of generalization error. The case of a

is called underfitting. It does reasonably well on the training set, but does not have the

generalization power to capture the structure and will perform poorly on new examples.

This is called high bias.

On the other hand, c is overfitting the training set. While it makes very good predic-

tions for the training set (predicting the exact value of each of the 6 points), it too fails to

capture the right structure and will perform poorly on new examples. This is called high

variance.

Often there is a trade-off between bias and variance. We have to balance the number

of features. Choosing the right number of features can be done with the help of cross-

validation. Examining the learning curve can be useful as well (that is, the function of

some parameter of the model and the learning error).
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Chapter 2

Gossip Learning Framework

In this section, we combine peer-to-peer systems and machine learning techniques. Specif-

ically, we overview the P2P computational framework called Gossip Learning Framework

from [14]. This paper focuses on machine learning for linear models in a P2P network

where data is fully distributed. This solution is unique in the sense that the data does not

leave the nodes, only models are transmitted through the network. The models essentially

perform a random walk. Each node should be able to predict using only locally available

data and there should be low network complexity. The proposed generic algorithm is very

robust, even in harsh environments of churn and message drop and latency, it performs

relatively well.

2.1 Machine learning on fully distributed data

The authors consider the extreme case when every node in the network stores one, and

only one data record, so there are as many nodes as data records. For example, this could

be a sensor reading.

The data never leaves the nodes, only the models are transmitted. This provides some

sense of privacy, as well as robustness. In some cases the local data would be too much to

be transferred over the wire. These are really good features and prove to be useful in the

applications of mobile phones and social networking.

It is noted that there are algorithms for computing functions over a P2P network when

data is distributed: aggregation (sum, minimum, etc.), Expectation Maximization, collab-

orative filtering. However, it is often assumed that each peer has more than one training

data locally and can learn using only that. In this case, model passing would be of less
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Algorithm 4 Gossip learning skeleton

1: initModel()

2: loop

3: wait(∆)
4: p← selectPeer()

5: send modelCache.freshest() to p
6: end loop

7: procedure ONRECEIVEMODEL(m)

8: modelCache.add(createModel(m, lastModel))

9: lastModel← m
10: end procedure

use.

2.2 Gossip learning skeleton

The proposed method in this paper uses a gossip message passing scheme, as shown in

Algorithm 4. The algorithm has an active and a passive component, both of which run

on every client in the network. In the default setting, each peer has one locally available

labeled training example, and a model, e.g. a vector representing hyperplane. The initial

model could be the zero vector, which is later improved by the update method. In a more

general setting, each node can store a queue of models of some size (modelCache). This

allows for advanced schemes such as voting.

The active thread runs in cycles, with ∆ time between them (e.g. 10 seconds). The

cycles need not start at the same time at each peer. In each cycle a neighboring peer is first

selected. It is convenient to use the NEWSCAST gossip algorithm [10] for peer selection

purposes, because it can use the gossip messages we are sending anyway, essentially

piggybacking on them. It also provides a local set of candidate peers which can be used

without any additional network overhead.

After the target peer p has been selected, we send our model to that peer. This method

is asynchronous, that is, we do not halt execution until the message has been received.

In fact, we do not require that every message arrives and we cannot guarantee that there

would be no delay (messages can be out of order as well).

The passive thread, ONRECEIVEMODEL, is called whenever there is an incoming

message containing a model. Generally, this method stores the incoming model m in a

suitable way. Specifically, we create a new model from m and our last received model

23



Distributed Machine Learning Using the Tribler Platform

Algorithm 5 CREATEMODEL: three implementations

1: procedure CREATEMODELRW(m1,m2)

2: return update(m1)

3: end procedure

4: procedure CREATEMODELMU(m1,m2)

5: return update(merge(m1,m2))

6: end procedure

7: procedure CREATEMODELUM(m1,m2)

8: return merge(update(m1),update(m2))

9: end procedure

using the createModel method.

The createModel method can be implemented using different strategies, the paper

suggests three variants, shown in Algorithm 5. The first one, CREATEMODELRW, essen-

tially guides models through a random walk. It only uses the first model, m1, and updates

that using the local training example. The second one, CREATEMODELMU, first merges

the two models and then updates the merged model using the training example. Finally,

the third one, CREATEMODELUM, updates both models using the local training example,

and then merges them.

Algorithm 6 shows a way to initialize and merge models, as well as the update instan-

tiations for the Pegasos and Adaline online learners. The INITMODEL method creates the

initial linear model as a zero vector with age 0 and initializes the model queue to have that

initial model. One merging strategy in the case of linear models is averaging and taking

the maximum of the ages as the new age. For linear models, the sign of the inner product

of the separating hyperplane w and query x gives the predicted class.

UPDATEPEGASOS and UPDATEADALINE are the straightforward update method im-

plementations of Algorithm 3 and Equation 1.1, respectively.
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Algorithm 6 Pegasos and Adaline model update, prediction, initialization, and merging

1: procedure UPDATEPEGASOS(m)

2: m.t← m.t+ 1
3: η ← 1/(α ·m.t)
4: if y ·m.wTx < 1 then

5: m.w ← (1− ηα)m.w + ηyx
6: else

7: m.w ← (1− ηα)m.w
8: end if

9: return m
10: end procedure

11:

12: procedure UPDATEADALINE(m)

13: m.w ← m.w + η(y −m.wTx)x
14: return m
15: end procedure

16: procedure INITMODEL

17: lastModel.t← 0
18: lastModel.w ← (0, . . . , 0)T

19: modelCache.add(lastModel)

20: end procedure

21:

22: procedure MERGE(m1,m2)

23: m.t← max(m1.t,m2.t)
24: m.w ← (m1.w +m2.w)/2
25: return m
26: end procedure

27:

28: procedure PREDICT(x)

29: w ← modelCache.freshest()

30: return sign(wTx)
31: end procedure
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Chapter 3

The Tribler Architecture

Now that we know about machine learning in distributed systems, let us discuss a real-

world example of a peer-to-peer network that we will build our protocols on.

Tribler is a social Peer-to-Peer content sharing platform. It can be thought of as a

BitTorrent [4] client, but with many additional features. One main advantage of using

Tribler is that it is fully decentralized, meaning that there is no single point of fail-

ure (whereas for traditional BitTorrent, the tracker is a single point of failure). Boot-

strapping is done by the use of superpeers. Everyone can become a bootstrap peer, see

http://www.tribler.org/trac/wiki/BootstrapTribler. Tribler has gained

a lot of attention lately due to its distributed nature. For detailed statistics, see

http://statistics.tribler.org/.

Another interesting feature is the integrated media player. This allows playing video

files inside Tribler, even when the video file is split into multiple RAR files. Furthermore,

Tribler can prioritize the first blocks of the torrent in order to be able to stream the video

even before it is completely downloaded.

Tribler offers great searching functionalities. The search is also distributed, there is

no need for a tracker. Content is structured into channels (or, communities), which we

will cover in detail in Subsection 3.2.2.

Tribler is the product of many years of scientific work done at the Delft University of

Technology, and is funded by the European Union 7th Framework Research Programme

(P2P-Next, QLectives).
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Figure 3.1: The Tribler client in action.

3.1 Implementation overview

Tribler is written in Python2, and is based on the BitTorrent client ABC. It is available

for multiple platforms: Windows, Mac, Linux (mainly Ubuntu). The official website of

Tribler is http://www.tribler.org, and its Subversion repository can be found

at http://svn.tribler.org/. At this time, the latest major version of Tribler is

5.5.x (see /abc/branches/release-5.5.x/ in SVN).

The Tribler GUI is created with the help of WxPython, the Python wrapper for the

popular widget toolkit WxWidgets. Figure 3.1 shows an example of how Tribler looks in

action. The newer versions offer XMLRPC access to the client, compatible with rtorrent.

This enables users to have control their client remotely, for example, web interfaces and

mobile applications. For local storage, Tribler uses SQLite. This database is mostly made

up of data about peers, torrents, and communities. VideoLAN is used as the integrated

video player and is accessed via the LibVLC plugin.

Tribler uses its own permission system, called Dispersy. We will discuss Dispersy in

detail in the next section.
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Figure 3.2: A schematic view of Dispersy and other components [17].

3.2 Dispersy

In this chapter we will discuss the Distributed Permission System (Dispersy)[17], which

was introduced in the QLectives Platform’s version 2.0 as part of Tribler.

Dispersy was introduced in 2011. Technical details can be found in QLectives de-

liverable D4.1.2[17]. Since then, the system has improved, the deliverable D4.1.3[20]

brings version 3.0 of the platform, with many improvements. It also provides results from

simulations made on clusters as well as real world deployment.

3.2.1 Main design concepts

Dispersy is designed to be scalable, up to millions of peers. It is designed to have no single

point of failure. Security is always hard to provide in a fully distributed environment, and

Dispersy only provides mild security solutions. Security is thought to be made strong

by social structure. Things are kept simple, so a community designer should only worry

about the features for their community.

Each peer initially creates a public-private key pair using Elliptic Curve Cryptography

[3]. The SHA1 digest of the public key acts as an identifier for each peer.

Dispersy uses the UDP protocol for transferring data. This simplifies connectability

problems because NATs and firewalls are more permissible towards UDP packets than

TCP packets.
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3.2.2 Communities

Dispersy provides a platform to build up communities. A community is basically a pro-

tocol over a set of nodes. This includes the permission, distribution, and gossiping sub-

systems. A community shares a set of messages known to all of its members, and a

set of permissions implemented by the members. An example community is the Barter

Community, introduced in [1].

Community members communicate with messages. Some of these messages are

signed by the sender, and propagated throughout the network. There are multiple sign-

ing and propagating policies. Within the community, it is possible to send messages to

random peers, which the gossip learning algorithms are somewhat dependent on.

Each message has four main attributes, as described in the deliverable:

• Authentication defines whether the message is signed, and if so, by how many mem-

bers. This defines levels of security through authentication. Possible Authentica-

tion policies are: No-authentication, Member-authentication, and Multi-member-

authentication.

• Resolution defines how the permission system should resolve conflicts between

messages. Permissions can be granted and revoked over time. There are 3 resolution

policies: Public-resolution, Linear-resolution, and Cyclic-resolution.

• Distribution defines if the message is sent once or if it should be disseminated

among nodes. In the latter case, it can also define how many messages should

be kept in the network. The distribution policy can be one of: Direct-distribution,

Relay-distribution, Sync-distribution, Full-sync-distribution, and Last-sync-distribution.

• Destination defines to whom the message should be sent or synchronized. The

destination policy defines the target of the message. Possible values are: Address-

destination, Member-destination, Community-destination, and Similarity-destination.

A community can have multiple types of messages, and for each of those it can define

one policy for each attribute. The possible values for these attributes are described in

detail in the deliverable.

Each community has a master member, who is the owner of the community. The

master member has every permission in the community. The master member’s public key

is the community ID.
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Channels

A special type of community provides channels. These are groups of torrents with at-

tached metadata and comments. People can subscribe to channels, can discuss torrents,

vote, mark as spam, and mark as favorite. The users can create their own channels, either

by collecting torrents or via an RSS feed. It is possible to make a channel public, so

that everyone can edit metadata, add and delete torrents. This is similar to how Wikipedia

works, and is a great tool for collaboration. However, people can use this platform to spam

and do malicious edits. The edits can be reverted, essentially marking them as spam. This

is where we think we can use machine learning for spam filtering and vandalism detection.

Each peer has a local view of channels they subscribe to and it is not feasible to

subscribe to all channels. We would like to build models that are available for every peer

and captures the global structure of the network so they can use that for filtering spam

comments, for example.
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Chapter 4

Implementation Details

Now, we provide a detailed discussion of the core of the Gossip Learning Framework, as

implemented in Tribler as a community, and we also show a few basic learning algorithms

that work on top of the core.

4.1 General overview of the GossipLearningFramework

community

We have used the 5.5.x version of Tribler, which was the stable release at the time of this

work. We have implemented a new community called GossipLearningCommunity,

which provides a generic framework for learning using gossiping. Each community must

define a number of message types that it handles. In our case, there is only one mes-

sage type called modeldata. We defined this message to contain one object of type

GossipMessage, which is the generic base class of the learning models. The whole

community uses this abstract message class, which can later be defined to be any learning

algorithm.

Each community has to define message payload conversion, that is, the encoding and

decoding of the message over the wire. We serialize our model objects using a JSON

serializer that can handle a wide variety of nested data structures without any extra effort.

In the actual message over the wire, the first two bytes specify the length of the message

and the rest is the JSON-encoded representation of the model. This solution offers great

flexibility.

We have to be very careful when unserializing data that comes over the network as it
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Listing 4.1: The modeldata message type definition.

Message(self, u"modeldata",

MemberAuthentication(encoding="sha1"), # Only signed with the

owner’s SHA1 digest

PublicResolution(),

DirectDistribution(),

CommunityDestination(node_count=1), # Reach only one node each

time.

MessagePayload(),

self.check_model,

self.on_receive_model)

can contain malicious code. Using our custom unserializer only specific types of data can

be introduced, namely those that are subclasses of GossipMessage.

As defined by Dispersy, a community can govern 4 different policies of each message:

Authentication, Resolution, Distribution, Destination. Our modeldata message defines

these as shown in Listing 4.1. The message is sent to one member in the community,

with 0 message sending delay (there is delay between sending messages, though), it uses

public resolution and direct distribution. The passive thread callback method is defined to

be on receive model, and the check model method carries out sanity checks on

the incoming data. The payload is a GossipMessage object which is converted using

the JSON format.

The most important parts of the Gossip Learning core, namely the active and passive

threads and their helper functions can be seen in Listing 4.2. These functions have the

same semantics as the ones in the Gossip Learning Framework described in Section 2.2

of Chapter 2. The core of the Gossip Learning Framework is made up of the above

mentioned features. These are used to implement a concrete learning protocol like the

Adaline perceptron or P2Pegasos.

4.2 Implementing a learning algorithm

To create a specific learning algorithm, one only has to create a subclass of GossipMessage,

implementing only init , update, predict and optionally merge. These func-

tions are also completely analogous with the Gossip Learning Framework described in

Section 2.2 of Chapter 2.

Listings 4.3 and 4.4 show the actual source code of the regularized Adaline per-
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Listing 4.2: The code of the active and passive threads.

def active_thread(self):

while True:

self.send_messages([self._model_queue[-1]])

yield DELAY

def on_receive_model(self, messages):

for message in messages:

msg = message.payload.message

assert isinstance(msg, GossipMessage)

if self._x == None or self._y == None:

continue

self._model_queue.append(self.create_model_mu(msg, self.

_model_queue[-1]))

def update(self, model):

for x, y in zip(self._x, self._y):

model.update(x, y)

def create_model_rw(self, m1, m2):

self.update(m1)

return m1

def create_model_mu(self, m1, m2):

m1.merge(m2)

self.update(m1)

return m1

def create_model_um(self, m1, m2):

self.update(m1)

self.update(m2)

m1.merge(m2)

return m1

def predict(self, x):

return self._model_queue[-1].predict(x)
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ceptron and P2Pegasos, respectively. As previously stated, they are both sublcasses of

GossipLearningModel and they implement the needed functions.

The current implementation of this community offers 3 basic models: Adaline per-

ceptron, Logistic regression, and P2Pegasos. It has a model queue implementation, which

enables merging and voted prediction. Throughout the code base, a simple sparse vector

implementation is used (using the dict structure), the bias term (x0 = 1) is automatically

added to the data. This could be improved to use libraries such as numpy.

The full source code of the implementation including the evaluation scripts is available

at the following git repository:

http://github.com/csko/Tribler
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Listing 4.3: The Adaline perceptron model implementation code.

class AdalinePerceptronModel(GossipLearningModel):

def __init__(self):

super(AdalinePerceptronModel, self).__init__()

# Initial model

self.age = 0

def update(self, x, y):

x = x[1:] # Remove the bias term.

label = -1.0 if y == 0 else 1.0 # Remap labels.

self.age = self.age + 1

rate = 1.0 / self.age

lam = 7

wx = sum([wi * xi for (wi,xi) in zip(self.w, x)])

self.w = [(1-rate) * self.w[i] + rate / lam * (label - wx) *
x[i] for i in range(len(self.w))]

def predict(self, x):

x = x[1:] # Remove the bias term.

# Calculate w’ * x.

wx = sum([self.w[i] * x[i] for i in range(len(self.w))])

# Return sign(w’ * x).

return 1 if wx >= 0 else 0

def merge(self, model):

self.age = max(self.age, model.age)

self.w = [(self.w[i] + model.w[i]) / 2.0 for i in range(

len(self.w))]
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Listing 4.4: The P2Pegasos model implementation code.

class P2PegasosModel(GossipLearningModel):

def __init__(self):

super(P2PegasosModel, self).__init__()

# Initial model

self.age = 0

def update(self, x, y):

label = -1.0 if y == 0 else 1.0

self.age = self.age + 1

lam = 0.0001

rate = 1.0 / (self.age * lam)

is_sv = label * sum([self.w[i] * x[i] for i in range(len(

self.w))]) < 1.0

max_dim = max(len(self.w), len(x))

for i in range(max_dim):

if is_sv:

self.w[i] = (1.0 - 1.0 / self.age) * self.w[i] + rate *
label * x[i]

else:

self.w[i] = (1.0 - 1.0 / self.age) * self.w[i]

def predict(self, x):

inner_product = sum([self.w[i] * x[i] for i in range(len(

self.w))])

return 1.0 if inner_product > 0.0 else 0.0

def merge(self, model):

self.age = max(self.age, model.age)

self.w = [(self.w[i] + model.w[i]) / 2.0 for i in range(len(

self.w))]
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Experiments

To assess the correctness and performance of the implementation, we compare our exper-

imental results with the Peersim [15] simulations found in [14].

5.1 Experimental setup

First, we tested the Adaline perceptron, Logistic regression, and P2Pegasos algorithms

on two databases, the Iris (setosa-versicolor) and SpamBase databases [9]. Iris contains

90 training examples and 10 testing examples, while SpamBase contains 4142 training

examples and 461 testing examples. The training examples were spread amongst all the

peers so that in the case of Iris, each peer has one training example locally. In the case of

SpamBase, due to hardware limitations, we used 400 peers with each having 10-11 local

training examples.

Tribler uses public-key cryptography with elliptic curves[3] for authentication and

authorization. We created a community by generating a master public/private key-pair

(Tribler/Core/dispersy/crypto.py). After that, we created public/private

key-pairs for each peer (Tribler/Core/dispersy/genkeys.py).

Our experimental scripts started the 90 (400) peers simultaneously using different

port and member ID settings (startExperiment.sh), initializing each of them with

a different local labeled training example (x and y). These were not complete Tribler

instances, but only the so-called ”scripts” (see

Tribler/community/gossiplearningframework/script.py). In this way,

we could do our experiments without starting the Tribler GUI.

Each peer’s script is redirecting the standard output and the standard error channels
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into logfiles. They also periodically (every 10 seconds) log the timestamp and the model

prediction error over the whole testing dataset as well as the number of messages received

and the model parameters. The error function we used was the average 0-1 error, which

means averaging the ratio of incorrect predictions over the whole network. These data

are aggregated (result.py) and then plotted (plot.sh). In the community, message

delay was set to 1 second and peers were started at the same time. We are reproducing the

no failure and no churn scenario.

Peersim[15] is a scalable discrete simulator for peer-to-peer networks written in Java.

It supports various overlay networks (e.g. NewsCast) and is highly extendable. The Gos-

sip Learning Framework is implemented on top of Peersim. For the Peersim simulations,

we used the similar parameters as in [14] and we only consider the no failure case and no

churn.

5.2 Results

Figure 5.1 shows the experimental as well as simulation results for the three models, that

is, the maximum 0-1 prediction error over every node over the whole testing set of Iris.

Figure 5.2 shows the results for the SpamBase database. In the case of the Iris database,

we can see that all three algorithms converge to an error of 0 in every single peer. For

Adaline perceptron it takes about 500 seconds, whereas Logistic regression needs about

190 seconds, and P2Pegasos only 110 seconds, which gives a sense of how well these

algorithms perform on this dataset.

Since the cycle length was 1 second, the two results should line up. When we compare

the number of cycles to the results of the Peersim simulations, we can see that the results

are more or less the same, which validates the implementation. The SpamBase database

takes longer to learn on, and again, the results are in accordance with results from [14].

Note that the choice of CREATEMODELMU over CREATEMODELUM does not give a

huge advantage, however, merging gives a huge edge over simple random walk.
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Figure 5.1: Experimental (top) and Peersim simulation (bottom) results for the three al-

gorithms without merge on the Iris database.

39



Distributed Machine Learning Using the Tribler Platform

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1  10  100  1000

0-
1 

E
rr

or

Seconds

P2Pegasos RW
P2Pegasos UM
P2Pegasos MU

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1  10  100  1000

0-
1 

E
rr

or

Cycles

P2Pegasos RW
P2Pegasos MU

Figure 5.2: Experimental (top) and Peersim simulation (bottom) results for the three algo-

rithms with some merge strategy on the SpamBase database. The simulation framework

only contained one type of merge strategy at the time of writing.
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Conclusions

We have successfully applied machine learning techniques in an existing distributed sys-

tem where data is fully distributed amongst peers. The solution provides some privacy, as

the local data never leaves the nodes, only the models are transferred. Our experiments

show that the implementation performs well in the popular Tribler social peer-to-peer

content sharing platform, as a separate community, which is basically a protocol layer.

The process of the implementation has been a great learning experience for all of us

and we look forward to cooperating with the developers of Tribler at the Delft University

of Technology. Future work includes feeding locally available data in each Tribler client

to our protocols. With that, we will be able to learn models globally over the network,

even if when the network size grows to millions of users.

Having obtained those models, we can make predictions, which could be particularly

helpful for spam filtering or vandalism detection applications as well as any online learn-

ing algorithm that can be implemented in GoLF. Having the forementioned services in a

network can greatly improve user experience, especially when it is hard to maintain the

network due to its size and distributed nature.
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